Minimally Supervised Question Classification and Answering based on WordNet and Wikipedia

نویسندگان

  • Joseph Chang
  • Tzu-Hsi Yen
  • Richard Tzong-Han Tsai
چکیده

In this paper, we introduce an automatic method for classifying a given question using broad semantic categories in an existing lexical database (i.e., WordNet) as the class tagset. For this, we also constructed a large scale entity supersense database that contains over 1.5 million entities to the 25 WordNet lexicographer’s files (supersenses) from titles of Wikipedia entry. To show the usefulness of our work, we implement a simple redundancy-based system that takes the advantage of the large scale semantic database to perform question classification and named entity classification for open domain question answering. Experimental results show that the proposed method outperform the baseline of not using question classification. 關鍵詞: 自動問題回答,問題分類,辭彙語意資料庫,辭網,維基百科

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WikiSense: Supersense Tagging of Wikipedia Named Entities Based WordNet

In this paper, we introduce a minimally supervised method for learning to classify named-entity titles in a given encyclopedia into broad semantic categories in an existing ontology. Our main idea involves using overlapping entries in the encyclopedia and ontology and a small set of 30 handed tagged parenthetic explanations to automatically generate the training data. The proposed method involv...

متن کامل

Using Wikipedia for Hierarchical Finer Categorization

Wikipedia is one of the largest growing structured resources on the Web and can be used as a training corpus in natural language processing applications. In this work, we present a method to categorize named entities under the hierarchical fine-grained categories provided by the Wikipedia taxonomy. Such a categorization can be further used to extract semantic relations among these named entitie...

متن کامل

Boosting Question Answering by Deep Entity Recognition

In this paper an open-domain factoid question answering system for Polish, RAFAEL, is presented. The system goes beyond finding an answering sentence; it also extracts a single string, corresponding to the required entity. Herein the focus is placed on different approaches to entity recognition, essential for retrieving information matching question constraints. Apart from traditional approach,...

متن کامل

Query Refinement and User Relevance Feedback for Contextualized Image Retrieval

The motivation of this paper is to increase the user perceived precision of results of Content Based Information Retrieval (CBIR) systems with Query Refinement (QR), Visual Analysis (VA) and Relevance Feedback (RF) algorithms. The proposed algorithms were implemented as modules into K-Space CBIR system. The QR module discovers hypernyms for the given query from a free text corpus (Wikipedia) an...

متن کامل

Search-based Neural Structured Learning for Sequential Question Answering

Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009